

TF Encrypted API Docs

TF Encrypted is a framework for encrypted machine learning in TensorFlow [https://www.tensorflow.org]. It looks and feels like TensorFlow, taking advantage of the ease-of-use of the Keras API while enabling training and prediction over encrypted data. Under the hood, TF Encrypted integrates state-of-the-art cryptography like secure multi-party computation [https://en.wikipedia.org/wiki/Secure_multi-party_computation], and homomorphic encryption [https://en.wikipedia.org/wiki/Homomorphic_encryption]. TF Encrypted aims to make privacy-preserving machine learning readily available, without requiring expertise in cryptography, distributed systems, or high performance computing.

TF Encrypted focuses on:

	Usability: The API and its underlying design philosophy make it easy to get started, use, and integrate privacy-preserving technology into pre-existing machine learning processes.

	Extensibility: The architecture supports and encourages experimentation and benchmarking of new cryptographic protocols and machine learning algorithms.

	Performance: Optimizing for tensor-based applications and relying on TensorFlow’s backend means runtime performance comparable to that of specialized stand-alone frameworks.

	Community: With a primary goal of pushing the technology forward the project encourages collaboration and open source over proprietary and closed solutions.

	Security: Cryptographic protocols are evaluated against strong notions of security and known limitations are highlighted.

This page only contains API documentation. Checkout the examples [https://github.com/tf-encrypted/tf-encrypted/tree/master/examples] on github to learn how to get up and running with private machine learning.

You can view the project source, contribute, and asks questions on GitHub [https://github.com/tf-encrypted/tf-encrypted].

License

This project is licensed under the Apache License, Version 2.0 (see License [https://github.com/mortendahl/tf-encrypted/blob/master/LICENSE]). Copyright as specified in the NOTICE [https://github.com/mortendahl/tf-encrypted/blob/master/NOTICE] contained in the code base.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 tf_encrypted	

 	
 	
 tf_encrypted.keras	

Index

 A
 | C
 | F
 | L
 | S
 | T

A

 	
 	add() (tf_encrypted.keras.Sequential method)

C

 	
 	call() (tf_encrypted.keras.Sequential method)

 	
 	compile() (tf_encrypted.keras.Sequential method)

F

 	
 	fit() (tf_encrypted.keras.Sequential method)

 	
 	fit_batch() (tf_encrypted.keras.Sequential method)

 	from_config() (tf_encrypted.keras.Sequential class method)

L

 	
 	layers() (tf_encrypted.keras.Sequential property)

S

 	
 	Sequential (class in tf_encrypted.keras)

 	
 	set_weights() (tf_encrypted.keras.Sequential method)

T

 	
 	tf_encrypted.keras (module)

Keras

Higher-level layer abstractions built on TF Encrypted.

	
class tf_encrypted.keras.Sequential(layers=None, name=None)

	Model defined by a stack of layers in sequence.

	
add(layer)

	Adds a layer instance on top of the layer stack.

	Parameters

	layer – layer instance.

	Raises

	
	TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] – If layer is not a layer instance.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In case the layer argument does not
 know its input shape.

	ValueError [https://docs.python.org/3/library/exceptions.html#ValueError] – In case the layer argument has
 multiple output tensors, or is already connected
 somewhere else (forbidden in Sequential models).

	
call(inputs, training=None, mask=None)

	This is where the layer’s logic lives.
:param inputs: Input tensor, or list/tuple of input tensors.

	Returns

	A tensor or list/tuple of tensors.

	
compile(optimizer, loss)

	Configures the model for training.

	Parameters

	
	optimizer – Optimizer instance

	loss – Objective function

	
fit(x, y, epochs=1, steps_per_epoch=1)

	Trains the model for a given number of epochs
(iterations on a dataset).

	Parameters

	
	x – Private tensor of training data

	y – Private tensor of target (label) data

	epochs – Integer. Number of epochs to train the model.

	steps_per_epoch – Integer. Total number of steps (batches of samples)
before declaring one epoch finished and starting the next epoch.

	
fit_batch(x, y)

	Trains the model on a single batch.

	Parameters

	
	x – Private tensor of training data

	y – Private tensor of target (label) data

	
classmethod from_config(config)

	Instantiates a TFE Keras model from its config.

	Parameters

	config – Configuration dictionary matching the output of
model.get_weights().

	Returns

	A TFE Keras Sequential instance.

	
property layers

	Historically, sequential.layers only returns layers that were added
via add, and omits the auto-generated InputLayer that comes at the
bottom of the stack.

	
set_weights(weights, sess=None)

	Sets the weights of the model.

	Parameters

	
	weights – A list of Numpy arrays with shapes and types
matching the output of model.get_weights()

	sess – tfe.Session instance.

 nav.xhtml

 Table of Contents

 		
 TF Encrypted API Docs

_static/plus.png

_static/file.png

_static/minus.png

